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ABSTRACT 

In this paper we prove the equivalence between the non-vanishing of the 

O correspondence on an irreducible, generic, cuspidal representation of 

U2~+1, the non-vanishing of a certain generalized period and the exis- 

tence of a pole of a twisted partial L-function. 
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1. Introduction 

We try in this paper to relate the poles of the partial L-function of a cuspidal 
generic representation 7r of the quasi-split unitary group Vnq-1, n to the vanish- 
ing or non-vanishing of its lift under the theta correspondence to Un,n. These 
properties are already known to be connected in several situations; let us cite 

(Sp(2n), O(2n)) [GAS3] and (Us, V3) [GRS1]. In all cases, including ours, the 
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connection between the two properties is the non-vanishing of a certain gener- 

alized period integral. 

To begin with, let us introduce the main notations of this article. We fix a 

number field F and E a quadratic extension of F, and denote their respective 

adele rings by AF and AE. We will denote either by c(x) or by 2 the action of 

the non-trivial element of the Galois group of E over F on an element x of E. 

Let Wn be the antidiagonal matrix of size n, that is the element 

of GL(n, Z). 

over F by 

(i 1) W n ~ . .  

0 

The group Un will be the algebraic subgroup of GL(n) defined 

U n  -~ { u  �9 G L ( r t ) l ] t ~ W n  u : W n } .  

We let Gn be U2n+I, and HI, l > 0 the algebraic subgroup of GL(2/) defined by 

Hl = {u E GL(21)]]t~ ( _ w  I Wl ) u = ( _ w  ~ wl ) } . 

Note that Ht is non-canonically isomorphic to U21. When g is an element of 

GL(n, AE), we let g* be the element of GL(n, AE) such that 

namely g* = wnt-g-lw~ �9 We define Nn to be the unipotent subgroup of upper 

triangular matrices of GL(n) with unit diagonal. We also let X be the subgroup 

of upper triangular matrices with unit diagonal in Gn. 
Let 7r be an irreducible automorphic cuspidal representation of Gn(AF), act- 

ing in a given space of cusp forms, which we keep denoting by 7r. We fix 

once and for all a non-trivial character r of AF trivial on F and we consider 

~ = r o TrE/F. For any element ~ of the space of 7r let 

= W~(g) = f ,  ~(ng)~ End,i+1 dn w (g) 
Jx (F)\X(A~) 

be its Whittaker Fourier coefficient with respect to ~. The space of all W~ 

is the C-Whittaker model W(~r, r  of ~-. We assume that this space is non- 

zero, i.e., 7r is (globally) generic with respect to ~. We want to introduce the 
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generalized period we will deal with. Consider the subgroup U of G~ whose 

elements are such that  the middle 3 x 3 block is /3 .  For a matrix u in U(AF),  

define Cv(u) n-2 a ---- r r "}- Un--l,n+l)" Define for g = (c ~) �9 U2, 

i(g) = 
In-x ) 

a b 
1 

c d 
In-1 

Then i(U2) acts by conjugation on U and preserves the character Cu. For any 

function ~ in 7r and any character # of A~,  we define 

P r  = 9fU2(F)\U2(AF)fU(F)\U(AF) ~(ui(g))r  

Let So be the (finite) set of places v of F such that  either vlec , or ElF,  or # 

ramifies at one of the places of E above v, or lr or r ramifies at v. 

The main result is the following: 

THEOREM 1.1: The following conditions are equivalent. 

1. The partial L-function LS(Tr • #, s) has a (necessarily simple) pole at s = 1 

for any finite set of prime S D So. 

2. The generalized period integral PC (., #) does not vanish identically on 7r. 

3. The representation 7r | #o det has a 0 lifting to a generic cuspidal repre- 

sentation of Hn for some choice of splitting data. 

The paper is organized as follows. In section 2, we describe the L-function 

machine based on an integral similar to a Rankin-Selberg integral, with an 

additional integration along a unipotent subgroup. This integration will lead, 

when we take a residue at s = 1, to the generalized period PC. In section 3, 

we prove the implication 1 :~ 2 ~ 3 and some result on the vanishing of the O 

correspondence. In section 4, we prove that  3 ~ 1 by showing that  LS(zr x #, s) 

is the product  of a zeta function by a non-vanishing partial L-function. 

ACKNOWLEDGEMENT: I would like to thank Tel Aviv University where this 

work took place. I am very indebted to David Soudry, first because he suggested 

the problem, but also for the theoretical background he provided as well as for 

numerous answers to my questions. The thorough review and advice of the 

referee permitted me to straighten some loose points in the first version of this 

paper. I would like to thank him also for his suggestion of useful improvements 

for the proofs and the article. 
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2. P r o d u c t  decomposi t ion  

Let us begin by decomposing the integral we will use to represent the L-function. 

2.1. FOURIER SERIES. We will need to use the decomposition of a certain 

constant term in Fourier series. Let U0 be the subgroup of Gn of the form (, a) 
1 . 

in 

PROPOSITION 2.1: For any ~ in the space of Tr and any g in Gn(AF), we have: 

~(ug)du = Z W~( 1 g). 
~ F )\U~ A F ) "~EN,~ ( E)\GL( n, E) 7" 

Proof'. This is a consequence of formula (1.0.1), p. 59 of [GPSR]. Let Sn be 

the subgroup of Gn comprising matrices of the form 

1 v t 

A* 

with A E GL(n), v any vector and X any matrix that fits. Then U0 is a normal 

subgroup of Sn and we denote Pn+l the quotient Uo\Sn. We observe that Pn+I 
is isomorphic to the subgroup ReSE/F Pn+l of [GPSR, p. 58]. The unipotent 

radical of Pn+I(F) is isomorphic to Nn+I(E); the quotient is isomorphic to 

Nn(E)\GL(n, E) where GL(n, E) is injected in Sn by 

~ > 1 . 

7* 

In addition, if for p E Sn we define 

f 
f(p) = ] ~(upg)du, 

Jv o (F)\U0 (AF) 

then f defines a cuspidal function ] on Pn+I(F)\Pn+I(AF). We have 

fN~+I(E)\N~+I(AE ) ](n)r (n)- ldn = W~(g), 
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where Nn+I(AE) is injected in Pn+I(AF) by the obvious morphism 

(n E Nn+I(AE) is sent to the class of any element of Sn(AF) that has n in its 

upper-left-hand (n + 1) • (n + 1) corner). The result of the proposition is then 

a consequence of abovementioned formula (1.0.1) applied to f(1) = f(1) = 

fUo(F)\Uo(AF) ~(ug)du. | 

2.2. THE INTEGRAL. 

Definition 2.1: Let # be a character of A~ trivial on E • . Let B2 be the 

subgroup of upper triangular matrices in U2. An element of B2 will be of 

the form (z ~x 1). For any s E C, we consider the character #s of B2(AF) 

whose value on the aforementioned matrix is p(z)H s-1/2. We define It,,s to 

be the space of holomorphic K-finite functions in the space of the unitarily 

induced representation of #8 from B2(AF) to U2(AF). Then, for any fs E I~,s, 
E U2 (fs, g) = ~ fs(?g) for 7 running over a set of representatives of U2(F) rood 

B2(F) (on the left). 

Let i = i2n+1 be the injection of U2 in Gn defined by 

r In-1 ) 

c d 

We recall that U is the subgroup of Gn of matrices of the form 

Z X a )  
~t .~ I 3 x t 

z* 

with z E Nn-1. We define the character Cu by 

CU: U(AF) --+ C • 

-'~ Xn-l,2 ) 

with u as above. We can then define, for ~ C 7r, 

f 
~r = ] (fl(ug)r 

Jv (F)\U(AF) 
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Definition 2.3: 
fs E I~,s, define 

AE/E x, s E C and For ~ an element of 7r, # a character of x 

f 
I(~, fs) = [ ~or U~ (fs, 9)dg. 

gu 2 (F)\U2(AF) 

We set R to be the algebraic subgroup of Gn of matrices of the form ( /o1 ) 
1 

y' 1 

(with y any n - 1-dimensional vector). For W an element of )4;(Ir, r and the 

other elements as above, define 

z(w, fs) fR(. )W(rw0i(g))Ss( )drdg 

with (1)  
/n-1 

Wo = 1 
In--1 

1 

and N2 the unipotent radical of B2. 

This integral will provide the L-function we study. It is the Rankin-Selberg 

convolution for Gn x GL(1) and can be generalized for any GL(k), k _< n. 

PROPOSITION 2.4: For ~, s E C with real part large enough and fs as above, 

I(•, fs) = Z(Wf, fs). 

Proof: We begin by unfolding the Eisenstein series. This is possible as long as 

we take the real part of s large enough. One has 

I(~, fs) = ~ ~(i(g)) Z fs('~g)dg 
2(F)\Us(AF) ~CBs(F)\Vs(f) 

= ~ us AF Z ~r 
Us(E)\ ( ) ,./EB2(F)\U2(F ) 

= fUs(F)Ws(AF) ~ ~r 
~EB2(F)\Us(F) 
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where this last equality holds because ~ is invariant by multiplication on the 

left by i(7) and when (zxa) 
Z* 

i("/)ui(7) -1 is the same matrix with x replaced by xi3(7) -1 , so that the central 

column of x is unchanged and so the character will not be affected. The integral 

will thus remain the same after a change of variable. We then collapse the sum 

with the integral: 

I@, fs) = f ~r 
JB 2(F)\U~(A~) 

Let T2 be the diagonal torus of U2. 

1(:,  fs) = ~T2(F)N2(AF)\U~(AF ) ~2(F)\N2(A,) :r )fs(ng)dndg 

We now consider changing the inner integral. For any g E Gn(AF), let 

with 

and 

I'= fN ~r 
2(F)\N2(AF) 

-= /" ~(ug)~u, ( u ) - l d u  
Yu ' (F)\U'(AF) 

V' = {u ~ G~llu = ( z 
xa) 
1 x' , z E N n ,  xn=O} 

Z* 

n-2   lul= ( +Xnl) ~2 E Zi'i+l 
i=1 

We note that there are two differences with the usual notation: the character 

is not taken on the last column of z and is taken on the last but one component 

of x, which is the last non-zero component. Decomposing the subgroup U', 
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II ~ J~Nn_I(E)\Nn_I(AE) ~nE-1/En-I ~A~-I/En-1 ~Uo(F)\Uo(AF) 

I I z  y x 1 0 * 
u 1 0 x' 

1 y' 
Z* 

--1 

xn-1 dudxdydz. 

We found it convenient, though maybe less natural, to introduce w0 imme- 

diately and to conjugate it from left to right. We can introduce it on the left 

of the argument of ~ and conjugate all the matrices up to g (excluded). What  

remains is ((100y z x / /  
u 1 x' 0 wog 

z* 0 
y' 1 

with a change of variable in the a part  of u (the last column becomes the first 

and the last row becomes the first and all other rows and columns shift in the 

natural way). Using Proposition 2.1, 

JaE /E-  _ "I~E /E ,,/~q~(E)\GL(n,E ) 

l( )/ 7 y z x 
W r 1 1 x' 

")'* z* 
y' 

10011 0 wog 
0 
1 

+X l) 
We want to remark here on the order of integration: it is important  to choose 

the right order to preserve the invariance of the partial integral under some 

rational subgroups. 

The idea is that  we integrate a character over a compact group in the two 

innermost integrals and this character must be trivial. This poses conditions on 

the form of 7. Namely, the integral over x tells one that  the last row of 7 must 

be of the form (an, 0 , . . . ,  0, 1); the first coefficient is not determined because the 

first element of the column containing x is 0. This is valid since the series on 
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"7 E Nn(E)\GL(n, E) is square summable. Then, since we sum modulo Nn(E), 

we might as well suppose that  the last column of 7 is t ( 0 , . . . ,  0, 1). We find that  
( 7 ' 0 )  ~ is of the form We now have ~' E GL(n - 1, E) and an easy 

an 0 1 " 
induction shows that  a set of representatives of 7 in the sum can be chosen of 

the form 

with"/EE*andaEEn-1 Ifwefact~176 ( " / "  In- i )  wefind 

) I' :.ycE, E a6~E~ I~R(F) \R(AF) I2n--1 ~--1 
1 )) 
a In-1 

1 rwog dr 
In-1 

a ~ 1 

:7~EE, aE~E~_I~-I/E..-1Wr ((  ")' I2n-1-~-1) 

1 
y +a In_ 1 

1 

y ' + a '  
1) wog)d  

)) = E Wr I2n-1 rwog dr 
~EE* (AF) ----17 

We arrive at 

I(~' fs) = ~T2(F)N2(A~.)\U2(AF) .y~EE , 
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(F)N2(AF) ~U2(AF) ")'6 E* 

---- fT2(F)N2(AF)\U2(AF ) Z "y 6 E* 

1 ---1~ ) i(9)) drfs(g)d9 

In-1 

~-l ) 9)) drfs(g)d9 �9 

We can put the matrix containing 7 into fs as well since # is trivial on E* and 

collapse the sum and the integral. | 

Remark 2.5: As suggested by the referee, a different proof is possible along the 

lines of [Gin]. 

2.3. NON-RAMIFIED COMPUTATIONS. 

2.3.1 Split places. Let v be a place of F such that  ElF splits at v and not in 

So. Let r be an integer. The group U~(Fv) is isomorphic to GL~(Fv). To see 

that  isomorphism concretely, let us denote by w one of the places of E above v; 

then the other one will be we. The non-trivial element of Gal(E/F) sends E~ to 

E~c; actually, these two fields are extensions of Fv of degree 1. The action of c is 

just the isomorphism induced by the equality Ew = Fv =Ewc (as extensions of 

Fv). An element of UT(Fv) is a pair (91,9~) of GLT(E~o) • GLr(Ewc) such that  

92 = wre(t9x-1)w~ �9 We will then identify U~(Fv) with GL~(F.) by projection 

onto the first component and identifying E~ and Fv. Let us see precisely what 

this means for Bz(Fv). An element of B2(F~) will be a pair of elements of 

GL~(F~) 

bl 

such that  d2 = a~ -1, a2 = d~ -x and b2 = -alld~lbl. When we take the character 

#(z) of an element (z x 1), this amounts to #w(al)Pwc(a2) = #w(al)#wc(dl 1) 
in these coordinates. 

PROPOSITION 2.6: Let W ~ be the essential vector On the sense of [JPSS, 
ddfinition (4.4), p. 211]) of the Whittaker model of lrv. Let fs be the dement of 
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I~,~,~ which is identically 1 on GL2(Ov). Then 

Z(W o, f~) = L(uv • #~, s)L(#v • #we, s) 
L(#w#wc, 2s) 

Proof'. We can first conjugate Wo to the right of the argument of W ~ By doing 

so, the elements of GL2 move to the top, left, bottom and right of GL2n+I. We 

can then cancel wo, as well as the integration along the maximal compact of 

GL2. What  remains is 

a 

Y In-1 f f 
Z(W~ =]F,,X)~]F,,~-I)2 W ~  1 )dydz 

In-1 
_t z d-1 

pw(a)pwc(d)ladlS-1/21adl-1/21all-nladl-l d• ad• d 

(the lad1-1/2 comes from the unitary induction, the lal 1-n from the Haar mea- 

sure for the y part and the lad1-1 from the Haar measure on U2). The - t z  

and d -1 come from the particular isomorphism we chose between Gn(Fv) and 

GL2n+I(Fv). To evaluate this integral, we will have to compute the values of 

the function W ~ It is explicitly computed in [JS1, section 2] provided we have 

a decomposition of its argument in Bruhat form nak. For unramified data, the 

k part can be ignored and the n as well, as soon as it is in N2n+l(Ov). 
First we claim that  we can do the Bruhat decomposition in each GLn sepa- 

rately and reunite them blockwise. Then, we can see that  the y integration can 
a 

be ignored: a Bruhat decomposition of the matrix (y I,,_1) is 

l a I Yl)al -1 1 al 
. . .  

\Yn-1/an-1 anl-1 

with ai = gcd(yi, 1). As soon as yi r COv, ai is a negative power of the uni- 

formizer. This means that  the a part of the argument of W ~ will have increasing 

powers of the uniformizer somewhere (because there is 1 in the center) and then 

W ~ is zero. So we must have all y~ in (9v and then we have a clear Bruhat 

decomposition 

(a , In-I) (~ In--l) 
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so the value of W ~ does not depend on y 60v n-1 and thus the integration 

gives 

WO (a ) /'n--1 
1 

f n -  1 
_t  z d-1 

It is also obvious that  a must be in F x N Ov. We claim that  we must have 

d 6 F x n Ov and z 6 d- lOv ~-1 and that  the integral in z is just multiplication 

by M 1-n. What  remains is 

(a ) Z(W ~ fs) = f,l( W ~ /2n-1 it~(a)it~,~(d)ladl~ladl-~d•215 
0~• d-1 

) = w ~ hn-  
a,d6N "CU - d  

with w a uniformizer of F,  and q the number of elements of its residual field. 

To simplify notations, we let # = #w, #' = #wc and 7r = Try. We will compare 

the formal series in q-S given by L(##',  2s)Z(W ~ fs) and LQr x #, s)L(# • it', s). 

We want first to recall the value of the class one Whittaker function from 

[JS1, section 2]. Let r be an integer and )A; a class one Whittaker func- 

tion of GLr(Fv) such that  14;(17) = 1. Then if J = ( j l , . . . , j ~ )  6 Z r, w J 

will be diag(w j~) and ~/V(U7 J) = 0 unless ja >_ j2 ~ "'" _> jr ,  in which case 

W(w d) = 5(vzJ) 1/2 Tr(pj(A)) with 5 the module of B~, pj is the highest weight 

module with highest weight J and A is the Satake parameter of the unramified 

representation generated by 14;. This gives us the expression for the integral 

Z(W~ 

Z(W~ = E Tr(p(a,o ..... O,-d)(a))it(w)ait'(w)dq -(~+d)s 
a,dCN 

k 

= E E T r ( p (  ~,~ ..... O,~-k) (A))it(w)~it'(vz)k-~q-ks" 
k6N a=0 

Next, recall the expression for the local L factor L(Tr x it, s), given in [JS2, 

section 1]: 

L(Tr x it, s) = E Tr(p(~,~176 (A))it(w)~q-as 
aGN 

with, as before, A the Satake parameter of 7r. Now, if # is the contragredient 

of 7r, its Satake parameter is A -1. But then Tr(pj(A-1)) = Tr(pj(A)), with 
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a ~ = ( - j n , - . . , - J l )  the "contragredient" weight of the dominant weight J = 

( j l , . . .  , jn) .  We get 

L(# x # ' , s )=  E , ,~ -as Tr(p(o ..... O,_a)(A))# (w)  q . 
aEN 

The last remark is that  

Tr (p j  (A))  Tr(pj ,  (A))  = T r ( ( p j  | p j , ) (A ) ) .  

So~ 

L(Tv • #, s)L(# • #', s) 

k 

= E Z T r ( p ( a , ~  ..... o ) (A))Tr(p(o  ..... O ,a -k ) (A) )# (vz )a# ' (w)k -~q  -kS 
kEN a----0 

k 

= E E Tr((P( a,O ..... o) @ P(o ..... O,a-k))(A))l'Z(va)al-t'(~)k-aq -ks" 
kEN a=0 

The two expressions for Z(W ~ fs) and the product of L-factors are very similar. 

The only difference is that  the first has 

fl( a,O,...,O,a-k ) 

while the other one has 

P(a,o ..... o) | P(o ..... o,~-k). 

But we know how highest weight modules tensorize. Since these two are very 

simple (they are just symmetric powers), the decomposition is very easy: it is 

the direct sum of all the P(b,0 ..... 0,2a-k-b) with 0 < b < a. What  this means is 

that when a varies, we will get all the P(b ..... -c) with b + c of the same parity 

as k and b - c _< k; each of these will be obtained only once. This looks like all 

the terms of Z(W ~ fs) of degree at most k, each multiplied by the appropriate 

power of # ( w ) p ' ( w ) q  -~s. Thus 

kGN / 

The sum is exactly the local L-factor L(## ' ,  2s). | 
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2.3.2 Inert places. The computation is very similar. It is actually easier be- 

cause the variables do not split. Let v be a place of F such that  E l F  is inert at 

v and v r So. We will denote w the place of E above v. Let W ~ be the spherical 

element of the Whittaker model of Try with value 1 at I2n+1. The local integral 

we have to compute is 

Z ( W ~  fE fE  W~ 1 dy 
~ ~-1 In-1 

y' a* 

#w(a) lalS-1/21all/21all-nlal-ld• 

with, as before, the lal 1/2 coming from the unitary induction, the [al 1-n from 

the (right invariant) Haar measure on the parabolic subgroup and the la[ -1 

from the Haar measure on U2. As before y must have integral coefficients (note 

that  then the coefficients of y' will be divisible by a -1 as in the split case) and 

a must be in Ov n Fv x . Since y varies in a dimension-1 space, integration over 

the y variable cancels. We arrive at something very similar to what we had in 

the split case: 

Z ( W ~  = ~ W ~  I2n-1 ~w(uy)aq -as 
aEN U7 -a  

~r/,~Sp2" ~{A~u (ZZY aq as 
= ~  ~'(~,o ..... o ) , ,  , , - ~ ,  ) - 

aEN 

with A the Satake parameter of Try and pS), pu" the irreducible highest weight 

module of highest weight A of SP2n(C ). This sum is in turn equal to the local 

L-function L(~rv • #w, s). 

PROPOSITION 2.7: Let W ~ be the essential vector for the Whittaker model of 

~rv. Let fs be the element of I~,s,v equal to 1 on U2(Ov). Then 

Z ( W  ~ f~) = L(Tr~ • #~, s). 

2.4. SOME NON-VANISHING RESULTS. We will show that  for any so E C, 

for any place we can always choose local data so that  the local integral is non- 

vanishing for s = So. 

PROPOSITION 2.8: Let v be a place o f f  and So a complex number. There exist 

a W in the Whittaker model of Try and fs E I~,s,v such that 

z ( w ,  -- o. 
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The proof will occupy the rest of this section. There are three non- 

archimedean cases, depending on the behaviour of each place in the extension 

and only one archimedean case. 

2.4.1 Split places. Let v be a non-archimedean place where ElF is split. The 

local integral is equal to / 1 / 
y I~-t 

Z(W'fs) = /N f(F, W( 1 woi(g)) 
2(F.)\GL(2,Fv) ,,~-1)~ In-1 

-tz 1 
dydzfs(g)dg. 

The Whittaker function W is right invariant under the action of a compact 

open subgroup Kw of GL(n, Fv). We choose fs to be equal to 1 on i-l(Kw) 
(which is a compact open subgroup of GL(2, Fv)) and 0 on its complementary 

in GL(2, O~). Then 

F~)2 F~'~-l)2 In-1 
- d - 1  . t  z d-1 

#~(a)#wc(d)ladII/2-~ladt~ /21aI:-ndX ad• d 

wo)dydz 

with c > 0 being the measure of i-l(Kw). 
We will then eliminate one by one the components of y and z as follows. For 

some pair of integers k, k r, let 

Wl (g) = f W(gwo(I2n+I + tEl,n+1 - uEn+l,2n+l)wo)dtdu. 
JIt I<_qk,lul<_q k' 

Then 

(:11 ) 
W( 1 wo 

_d-~tz d-1 
(I2n+l -[- tEl,n+1 - uEn+ l,2n+ l )) dtdudydz 
#w(a)#wc(d)ladl2-n-Sd • ad • d 
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=f(F[)2f(g.._2)2fq<q~.]u,<_qk, ~b(tyn-l+uzn-1)dtdu 

Y I~-2 
W( h wo)dydz 

In-2 
- d - l t z  d-1 

pw(a)#wc(d)ladl2-n-~dX adX d. 

We may now choose k and U large enough so tha t  the inner integral is zero 

unless 

I2n+l + Yn-lEn-l,1 - Zn-lE2n+l,n+2 E Kw. 

We then have 

l 
a 

/( y -2 

#w (a)#we (d) ladl 2-n-s d x ad x d. 

13 L~-2 I wo)dydz 

_d-ltz d-1 

We go on by induction until we arrive at 

(a ) Z(Wn-1, fs) ~- Cn-1 fj( W( I2n_ 1 wo) 
F,X, ) 2 d-1 

#w(a)#~c(d)]adl2-n-sdx adX d. 

With 

17V(g) = f W(gwo(I2~+l + tEl,2 - uE2n,2n+l)Wo)r + u)-ldtdu, 
Y,t t<__q~,M<_qk' 

we have similarly 

z(wn_ , L)  = 

for some non-zero constant c. It  is then easy to check tha t  one can find in the 

Whit taker  model of Try a Whit taker  function which is non-zero on w0. 

2.4.2 Inert places. Let v be a non-archimedean place where ElF is inert. The 

computat ion is entirely similar to the split case; one has to replace d by ~ (]ad] 

by ]a]), z by ~ and u by L 
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2.3.3 Ramified places. If v is a place where ElF ramifies, then there is no 

extension of local fields so that  E~ = F~ and the computation is exactly the 

same as above once we take into account that  ~ = x for all x E Ew. 

2.4.4 Archimedean places. We want to prove that  the local integral does not 

vanish. We will bring the problem to the usual L-function problem with the 

following lemma. 

LEMMA 2.9: Let Try be a generic irreducible representation of Gn(Fv) with 

Whittaker model W = W(Tr~, ~ )  and s E C. The integral Z(W, fs) is non- 

vanishing on W x I.,s,. i f  and only if  

f 
Z'(W, fs) = I W(woi(g))fs(g)dg 

JN 2(AF)\U2(AF) 

does not vanish on the same space. 

Proof'. We see that  the integrals are very similar; we just have to eliminate 

the variables in R. This will be done recursively using the Dixmier-Malliavin 

lemma. We know from [DM] that  any W in )4; can be written as a linear 

combination of functions of the form 

g '  ) /F,, ~2(X)Wl(g(I2n+l + XEl,n - xE2n+l,n+2))dx 

with q~ C $(Fv).  This leads to 

WI 2(AF) \U2(AF) l (F,,) 

with 

RI= I 

W1 (rwoi(g) ) f s (g)~(rn-1)dr 

Since r  and thus ~, is arbitrary in $(F), the integral will not vanish if and 

only if 

~2(AF)\U2(AF) /RI(F~) W1 (rwoi(g) ) fs(g)dr 

1 II rl 
" In_l 

rn_ 1 
1 

In-1 
\ , 1 
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does not vanish for some W1. This proves the lemma for n = 1. The induction 

step is easy and follows the same lines, replacing Ri by R~+I where for i <_ n 

Ri  ~- 

/x / 
" / n - i  

r n - i  I2i-1 [~ �9 

In-i J �9 1 

The proof of the non-vanishing of the local factor is based on the following 

lemma. 

LEMMA 2.10: Let ~rv be a representation of Gn(Fv) that is irreducible and 
generic. Let f~ be a family of elements of I~,~,~ with the same restriction (as s 
varies) to Ks. The local integral Z'(W, fs) is convergent for real part ors large 

and can be continued meromorphically in s to C. Moreover, the meromorphic 
continuation is continuous in each of its arguments. 

Proof: This is a consequence of the asymptotic expansion of the Whittaker 

functions. The proof follows the lines of the proof for any such integral. | 

Using the lemma, we can prove 

PROPOSITION 2.11: For any So E C we can find elements W and fs such that 
the local integral Z(W, fso) is non-zero. 

Proo~ We proceed with Z~(W, fs) since this is equivalent. Assume that  

Zt(W, fs) is 0 at s = So for all choices of data. Let Ks be the maximal com- 

pact subgroup of U2(R). For real part  of s large, we have, thanks to Iwasawa 

decomposition, 

Z'(W, fs) =/__ Zl (W,s ,k) fs (k)dk  
JK 2 

with 

Since f8 can be chosen as we wish on B2 N K2\K2, it follows that  Z1 is zero for 

any choice of the data  W and k. Thus, with k = / 2 ,  and for any W, 

W Wo (a a )la,S~  dXa=O 
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Now, if we replace W by 

Wl (g(I2n+l - ~E2~,2~+l))~(v)dv, + wE12 

we get that  for any W, W(wo) = 0, which is false. I 

111 

3. T h e t a  c o r r e s p o n d e n c e  

3.1. GENERALIZED PERIOD. Let us suppose that  LZ(Tr • # ,s )  has a pole at 

s = 1 for any finite set of places S such that  S D So. Let W = | b e a  

(pure tensor) element of l/V(Tr, ~). According to 2.3, for any s such that  there 

is no pole and any fs E I~,s, L(Ir x #, s) and Z(W, fs) are equal up to a finite 

set S of places (including the places at infinity). Increase S such that  So c S. 

According to 2.4, for any v E S we can choose a W~ E W(Trv,r and a cross- 

section f*,v E Iu,s,v such that  Z(W*, f~,v) is non-zero at s : 1. We change W 

and fs such that  their local component at v is resp. W v and fs,~ for v E S. 

The pole of the L-function must come from the Eisenstein series on U2 and thus 

is simple, with non-zero residue. The residue of the Eisenstein series is #o det. 

This means that  the integral 

P ~ ( V ' # ) - -  fU:(F)\U2(A~)L(F)\U(AF) ~(ui(g))r 

is non-zero for ~ the element corresponding to W. It is this period that  will 

provide the link between the pole of the partial L-function and the theta  corre- 

spondence. 

3.2. SETUP. We set up the data  needed for the discussion of the image of the 

Howe lift between Gn and the tower of Hi, l > 0. 

The group Gu will act on the right of the vectors while Ht will act on the left. 

Let v be a finite place of F such that  ElF is inert at v. Let v be an admissible, 

irreducible and generic representation of Gn = Gn(Fv) and for l integer, a an 

admissible, irreducible representation of Ht = Ill (Fv) which pairs with v. This 

means that  there is a Gn x Ill equivariant map T: 

(~,l) 
T: we | a -+ v, 

.(n,0 is the Well representation of Sp(4/(2n + 1)) restricted to the dual where we 

pair Gn • Ill. We will denote the space of Schwartz-Bruhat  functions on an 

Fv-vector space V as $(V) .  
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Note that  the space on which HL acts is split. Let (W, (., .)) be the space on 

which Gn acts; we choose a basis ( e l , . . .  , ca , co , e -n , . . .  , e - l )  with respect to 

which the form has matrix 

Wn 1 Wn ) . 

Put  W + = Vect(e+i)Ki<n. Similarly, let (V, (., .)) be the space on which Ht 

acts, let ( f l , . . . ,  ft, f - t , . . . ,  f - l )  be a basis of V and let V + = Vect(f+j)l<_j<_l. 
We thus have W = W + | (eo) | W -  and V = V + | V- ;  for any vector v E V, 

(~,0 we write v = v + + v-  with v • E V • We will realize we on a "mixed" model. 

Let us denote X = W | V and X + = W + | V | (e0) | V-  which will be 

viewed as V n �9 V - .  The space will be S(X+);  we view this space as the space 

of functions with n variables in V and one (the last) in V- .  We denote Zn,n 
the set of matrices 

Z =  1 
Z* 

w(n'O•( 
z ) 

r ~ 1 , 1 ) ~ ( v l , . . . , v n ; v - )  = 
Z* 

(1) ~o(vl, v2 + z1,2v1,..., Vn + Zl,nVl + "'" + Zn--l,nVn--1; V--) with z E Nn, 

we t 1 t' ,1 )~(Vl , . . . ,  Vn; V--) : 

in 

(2) ~)((EtiV~,V-- ~-EtiVC))~(Vl,...,Vn;V-- ~-~i riVe) , 
i i 

(3) % ' t  1 ,1)~(vl,...,vn;v-) 
In 

= ~(Tr(Gram(v) .Swn))~(Vl , . . . , vn ;v - )  with Gram(v) = ((v~,vj))l<_i,j<_n, 
(~,l) 

(4) we (1, h ) ~ ( v ~ , . . . , v n ; v - ) =  

I d e t a l l / 2 r  -1 . - 1 _  ( ;  : , )  ,h  v~;a v ) w i t h h =  

The I det al 1/2 in (4) is a normalizing factor to bring unitary representations to 

unitary representations; it corresponds to ] det A] 1/2 for a matrix ( A A. ) in the 

symplectic group of the space X. 

with z E Nn. On $(X+) ,  we have 
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Let g be a Whittaker functional on T. It satisfies 

= Cx(u)g(v), Vu X(F,) ,Vv 

We can view g o t  as a bilinear form b on $(X  +) | V~, satisfying 

(5) V(u,h,~) E X(Fv) • Ht • V~, b(w(C~'t)(u,h)r = ~x(u)-lb(~,~).  

We will show that  the space of such bilinear forms is zero for l < n, and that  

if a is non-zero for l = n, then it is generic. For that  we will want to reduce 

the bilinear form to a smaller subspace. Since we have information on the 

action of a unipotent subgroup of Gn, we will study Jacquet modules of $(X+). 
Let us first study the action of the Un,n embedded in Gn in the outermost 

blocks. Using (3), we can study the twisted Jacquet module of $ (X  +) with 

respect to the Siegel radical of this Un,n and the trivial character. We see that  

if ~(vl , . . .  ,Vn;V-) r 0 then Gram(v) = 0, so that  the vi generate a totally 

isotropic subspace of V; let us call it H. We still have the freedom to choose 

V +, V-  and the f~. We choose V + to be a maximal isotropic subspace of V 

containing H and f l , . - . ,  fdim H will be a basis of H. We then choose the f~ 

(and V- )  so that  the matrix of (., .) in the basis ( f l , . . . ,  fn, f - n , . . . ,  f - l )  is 

( -w,  w,).  Now with (1) we can bring (vl , . . . ,Vn)  to an n-tuple (v~, . . . ,v~) 

with v~ = v~ ifvi ~ Vectl<j<i(vj) and v~ = 0 otherwise. We want to mod-out by 

the action of the (upper) Siegel parabolic subgroup St of Hr. It can be described 

as the set of linear transformations h such that  

- For any family (wi), dimVect(wi) = dimVect(h(w~)) (invertible trans- 

form), 

- For any w and w', (w, w') = (h(w), h(w')) (unitary transform), 

- For any family (wi), dimVect(w~-) = dimVect(h(wi)-)  (in the Siegel 

parabolic subgroup). 

Now the non-null vectors of (v~) form a free family of V-  and the scalar product 

of each pair is 0. Thus one can find in Sl an h such that  h(v~) = v~ p for any i 

provided that  v~' = 0 ~ v~ = O, v~' = fk ~ v i r  Vectl<_j<i(vj) (note: k is 

a special variable that  starts at 1 and increases by 1 each time it is used). Such 

families look like 

(6) f2,0*,... 

0* means "any number (including 0) of null vectors". Any two such families 

are not equivalent under the action of Zn,n • Sl. So we found a finite set of 

representatives for the action of Zn,n • St on W + | V. 
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We will now use equation (2). If a function ~ in the twisted Jacquet module 

of S(X +) is such that  ~(v) ~ 0, then we must have 

i i i 

for any such family of t~. Since the product (., .) is non-degenerate, this gives 

dim H affine conditions on v -  with respect to the vi. This constrains v -  to 

an alpine subspace L ~ of V-  whose dimension is l - dim H. The underlying 

vector space L is the orthogonal complement of H for the pairing defined by 

(., .) between V + and V- .  Thus a full set of representatives of the action of the 

product of the unipotent subgroup of Gn by Sl is given by 

(8) (O*, f l ,  0", f2, 0 " , . . . ,  0", fdim H,0*;Vo) 

where the first vectors verify equation (6), and v~- is chosen to satisfy equation 

(7). 

3.3. FIRST OCCURRENCE. We begin with 

PROPOSITION 3.1: I l l  < n, the theta lift of ~ to Ht is trivial. 

Proof." The proof is purely local. We choose v a finite place of F as above. 

We want to prove that  there is no such b as in equation (5). We have seen 

that  if ~ in the twisted Jacquet module of $ (X +) and (Vl,. . .  ,Vn; v - )  is such 

that  ~ ( v l , . . . , v n ; v - )  = 0, then (V l , . . . , vn ;v - )  E X ~ ~- H n • L ~ The set 

X ~ is a closed (alPine) subspace of X + ~_ V n • V -  and the set of elements 

of S ( X  +) whose support is included in X ~ is isomorphic to $ ( X  ~ (see [BZ, 

Proposition 1.8]). Now in X ~ we have several orbits of the subgroups considered 

in the preceding section. Each has a representative of the type (8). If we order 

the orbits by increasing dimension (which is the number of non-null vectors in 

the n first vectors of the representative), each orbit is closed in the union of 

the following ones; note that  the order inside a given dimension class is not 

important. The twisted Jacquet module of $ ( X  +) for X(Fv)  and character 

~ x  1 t I = ~) E Zi'i+l -}- tn 
Z* 

is composed of functions with support included in the union of these orbits. 

The set of such functions on the orbit of a vector of type (8) is isomorphic to 

indCZn,~ • $(LO), where Ind c is compact induction and R(Fv) is the stabilizer 
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of (8) in Zn,n x Sl (the action of Zn, n is trivial on S(L ~ and that  of Sl is the 

standard one). Thus the bilinear form b would be a Zn,n x Sl-invariant bilinear 

f o r m  o n  

indCZn,,~ xs, S(L o) x (r | a). 

But now if dimH < n, R(Fv) contains a subgroup of the form J x {1} where J 

is a simple root subgroup of Gn and on that  subgroup ~ x  is non-trivial, thus b 

is zero. | 

This gives 

COROLLARY 3.1: 

- IfTr lifts non-trivially to Hn(AF) then the lift is cuspidal and generic. 
- If T is a generic representation of G~(F~) that lifts non-trivially to a 

representation a of H~( Fv) then a is generic. 

Proo~ Combining Proposition 3.1 with the second part  of [Watl, Theorem 

4.3, p. 251], we get that  the lift is cuspidal. 

We prove the local result concerning Whittaker models. Suppose that  T is a 

representation of Gn = Gn(Fv) with Whittaker model with respect to character 

r  Suppose that  it lifts to a non-trivial representation a of Hn(Fv). This 

means that  the bilinear form b is non-trivial. But the space of such bilinear 

forms is isomorphic to 

T l c Z n  teXan (9) Homz~,,,xSn(~y X Q a, ma  R ' $(L~ ~ HomR(ReSR(r |176 

We must have dim H = n so that  there are no null vectors in the first n elements 

of (8). We thus have only one possibility for the last element: f -n .  Thus 

L ~ = { f -n}  and $(L ~ is the trivial representation. The representative for the 

class of (Vl , . . . ,  vn ;v - )  can then be chosen equal to 

(10) ( f l , f 2 , . . . , f n ; f - n ) .  

Then we have 

The homomorphism of (9) is a function ~ on Va such that  for any u = (z �9 ) Z* 

and any ~ C V~, 

+ . . .  + = 
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or equivalently 

g(tT(U)~) ---- ~)(Z1,2 -I-''" "~ Zn--l,n)--l~(~). 
So this g is a Whittaker functional on Vz. This proves that the lift is generic. 
| 

3.4. FROM Un+l, n TO Vn,n. The embedding of a pair of unitary groups in 

a metaplectic group depends on a character. We will call this character the 

parameter of the corresponding Weil representation and 0 correspondence. 

PROPOSITION 3.3: Assume PC (~, #) is not identically 0 as ~ varies in the space 

of ~. Then the 0 lift of ~ | det to Un,n with respect to character ~ and some 

parameter ~ is non-trivial. As noted before, this means that it is cuspidal and 

generic. 

Proof: The proof is very similar to the proof of Proposition 3.1 and Corollary 

3.1. The Weil representation we choose now will be roughly the opposite one. 

This time we pick X + = W |  + (identified with wn);  Gn still acts on the right 

and Hn still on the left. As in [Kud, Proposition 3.1], we choose a character 

v of A ~  whose restriction to A~ is the quadratic character corresponding to 

the extension ElF.  For convenience, we twist the action of Gn by the character 

tt o det. The action of the subgroups is comparatively easy to describe. We have 

(11) wr 1)r xn) = p(det g)~(xlg,  . . . , Xng), 

~(1, - ( a "~ = ' \ 02r 
(12) 

v(det a*)2n+l I det ap+l /2~(a-1 .  ( x l , . . . ,  Xn)), 

I  )lOIXl'""x l-- 
(13) 

~ ( ~  Tr(Gram(x) .SWn))~(Xl , . . . ,Xn) ,  

Remark: a .  ( x l , . . . ,Xn )  = (~a~jxj)l<_i<_~ (this is the formal action of a on 

a column vector, except that instead of being scalars, the zi are vectors); the 

term I det al ~+1/2 in (12) is the normalizing factor. 

We denote the O lift of 7r with respect to Weil representation co~,,, by 0r 

Notice that this is the O lift of ~r N # o det. Then the elements of O~,~(rr) are 

the functions 

(14) = f 8~,,(g,h)qo(g)dg, qo �9 7r, h �9 Un,n(AF), 
Ja n(F)\G,,(AF) 
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where 8~,. is the O kernel for the dual pair (Gn, Hn) with Well representation 

we,.. It is defined by 

xEX+(F) 

where �9 is a Schwartz-Bruhat function on X +. 

To prove the non-vanishing of 8~,. (rr), we will directly compute its Whittaker 

coefficient with respect to the upper triangular unipotent subgroup UH of Hn. 
We want to compute 

(15) W~ (h) = f ~(vh)r 
Jv H (F)\ UH (A) 

with ~ as above. We substitute ~ with the expression in (14), substitute the O 

expression and perform the integration with respect to the Siegel radical of Hn. 
What remains of the sum over X+(F) are the vectors x = (xl , . . . ,Xn) such 

that  (0 
(16) Gram(x) = ((xi,xj}) = " , 

. . ,  

that is, all the products are 0 except {x~, x~}, which is 1. If we take 

we have 

W~(h) = 

fZ'(F)\Z'(AF) fG~(F)\G,~(AF)EWr zh)~(x, , . .  . ,Xn)qO(g)dgr 

the sum being over all x = (Xl , . . . ,Xn)  E X + satisfying (16). If the vectors 

( x l , . . . ,  Xn-,) are not linearly independent, as in the proof of Proposition 3.1, 

there is a simple root subgroup in their stabilizer and the intertwining operator 

vanishes as well as the integral. So we have only one orbit under the action 

of G,~(F) and we can take as a representative of x in its orbit the system 

( e l , . . . ,  en-1, eo). Its stabilizer in G,~ is the subgroup 

R' = r = 1 0 0 E U2 �9 
c d * 

In-1 
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W~(h) = 

(g)dg (z)-laz' 

where ~u' (g) = fR'(F)\R'(AF)~(rg)#(detr)dr.  Now because the representative 

is so specific, we can use the Well representation to transform the integral over 

Z'  in the integral over some subgroup of Hn. We have 

z 

w(g, 1 1 

(17) 

~(g, 

Z* 

Vl 

Vn--1 
1 

h)(I)(el~. . . ,  en-1 ,  Co) 

,(z )_1 
= w  13 

Z* 

1 --Vn_ 1 . . . 

g, h )O(e l , . . . ,  en-1, eo), 

-v-~- h)(I)(el, . . . ,  en-1, eo) = 

(18) 

Vl --I  

Vn-1 

~( 0 
1 0 - v n - 1  . . .  -V~ 

in 

g, h)@(el , . . . ,  en--1, e0) 

w i t h ,  such that the resulting matrix is in Gn. We can then exchange the order 
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of integration and what remains is 

W~(h) = ~R,(AF)\G,~(AF ) (g, en-1, e0) 

fz ~R' (zg)r dzdg 
"(F)\Z" (AF) 

= [ #(det g)wr h)a2(elg,..., e,~-lg, eog) 
JR '(AF)\G.,(AF) 

fz ~R' (zg)r 
"(F)\z" (AF) 

where Z" is the subgroup of Gn deduced from Z' thanks to equations (17) and 

(18). We see that  the innermost integral with g = I2n+l is just Pr  This 

means that  it is non-zero for some ~ by hypothesis. Since �9 is arbitrary, we can 

choose it such that  the support of the function 

g ~ w~,~(1, h)O(elg,..., e~-lg, eog) 

is concentrated as near In as we want and for a �9 with a small enough support; 

W~ will be non-zero at that  h, thus the O lift is both non-zero and generic. 
| 

Note that,  as already proved in [Watl, Theorem 4.6], the lift to Hn+I is 

always non-trivial and generic. If we repeat the proof of the last proposition, 

we will find 

W~(h) = f wr h)'~(el,..., en-1, e~, eo)Wv(g)dg. Ju o(AF)\G- (AF) 

Since �9 is arbitrary, it can be chosen so that  the integral is non-zero. 

4. Existence of  the pole 

In this section we prove that  if 7r | # o det comes from a representation a with 

respect to some O lifting, then LS(~r • #, s) has a (necessarily simple) pole at 

s = 1 for any finite set of places S D So. Let us suppose that  7 r |  

comes through 0 correspondence from a representation a of Hn and let v be 

the character determining the splitting. We suppose that  the action of Gn on 

the SchrSdinger space is, up to the unitary normalizing factor, linear. 

We know from section 3 that  a is necessarily generic. We first recall from 

[Wat2, p. 113] the relation between the values of the Whittaker functions. Let 
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be an element of a. For each �9 E $(X+), we denote ~oe the element of 

rr | # o det defined by the formula 

= f.  (g, h h )dh. 
(F)\Hn (AF) 

We then have 

W,o (g) = 

fU.(h~)\gn(A~) 
W~(h) ~ r h ) O ( f l , . . . ,  fn; f-n)dzdh. 

n ,n (AF)  

Remark: Here UH(AF)\Hn(AF) is not a group, so that  dh is not a Haar mea- 

sure. By the Bruhat decomposition, an element h can be written UH(AF)ak 
with a in the split torus and k in the maximal compact subgroup of Ha. We 

then have dh = 5 - l (a )dadk ,  because if g = nak, dg = 6 -1 (a)dndadk. 

This formula decomposes into an Euler product, so we will use it locally. 

We suppose that  v is a place of F outside So. We take the model of the O 

correspondence that  we had in the proof of Proposition 3.1. Suppose that  ElF 
remains inert at v and let w be the place of E above v. We denote w the 

uniformizer of Ew = E | Fv and q the number of elements of the residual field 

of Fv. We choose �9 to be the characteristic function of X+(Ov). We notice that  

W~o is right invariant by the action of Gn(Ov), so that  we found the essential 

vector, provided it is non-zero. We take 

/ "c~al . . . 

g = ~:zTa~ 

1 
d* 

) 
with ai integers and d* the appropriate diagonal matrix. Using the above 

formula, we find 

E 5-1(h)W~(h)fz r162 W~o(g) = 
bl>...>bn ~,n(AF)  

with 

h = 

oh1 ) 
".~ 

~Tb, ̀ 
s  
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We have 

w(zg, h ) O ( f l , . . . ,  fn; f-~) = 

.uya2-b2t +.~ya2-bl z r ...;v~yb~f_n) q-n~a'-�89 J2 12J1, 

with z = (zij). The power of q on the first line is the normalization factor to 

bring unitary representations to unitary representations. To contribute non- 

trivially, we first see that  we must take al > bl. Then we need to have 

uya2-blzl2 E Ov for the non-vanishing of (I), so z12 E wbl-a2Ov. If a2 > bl, 

since r is trivial exactly on Or, the integral over z12 will be equal to 0. We 

thus must take bl _> a2. We see that  we have to take a2 _> b2. Iterating yields 

al >_bx >_a2 >_'" >_an >__bn >_O. 

The variables zij, i < j, vary in vzb'-a~O v. This yields 

W~a(g) -= Z V(~zY-~b')w~~189 
al>bl~_...~a,~b,~_O 

with P(x) = v(~). We can thus compute the local L-function of lrv • #~ in 

terms of av: 

L(rv • #~ , s )  = Z W~*(g)q-~l(s-n) all other ai = 0 
al_>0 

"= Z #(~y)-b, W~o(h)q-nal+(n-,/2)bl-al(s-n) 
al~_bl~O 

= ~ v(~)-blW~(h)q -bl(s-n+i/2)+(bl-al)s 

a l ~_bl ~_O 

= Z q-mS Z P(~)-bl~V~(h)q-bl(s-n+i/2) 
m>0 bl>0 

= IE,w(s)L(av • Vv 1, S). 

The fact that  the sum on the next to last line is equal to L(av x ~jx, s) will be 

proven as part  of an upcoming paper on the reverse case; it is anyway similar 

to the formula found for L(Tr~ x #w, s) in section 2. 

This proof can be conducted along the same lines for v split (but we get a 

second variable instead of the conjugate one) for the same result. 

The bot tom line is that  for a finite set of places S containing So, we have 

LS(Tr x #, s) = (ES(s)LS(a x ~-1, s). 

Since a is unitary and generic, LS(a x p - l , s )  cannot vanish at s = 1 so that  

the partial L-function of ~r x p must have a pole there. 
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We recall that on the right-hand side, the character # of the beginning is built 

into ~ by the twisting of the Weil representation. If we put 7r ~ = 7r | p and twist 

the representation by #o det -1 (on the Gn side), what we get is 

LS(Tr ' x #, s) = Ls(#, s)LS(a x ft~ -1, s). 

This is the analog of the result of T. Watanabe, [Wat2, p. 94]. 
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